

Knowledge-Based Systems and Deductive Databases

Wolf-Tilo Balke

Christoph Lofi Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de

4. Relational Database Model

- 4.1 Logic as Relational Data Model
 - Short detour to ease the understanding of our logical tools

- Today the lecturer looks different...
 - Silke Eckstein Lecturer of '**Relational** Databases 2'

By the way... very important and interesting lecture!

- Unfortunately Tilo Balke & Christoph Lofi are at a very important conference in Fès, Morocco...

4.0 Summary Last Lecture

- A first order logic language can be defined as a quadruple $\mathcal{L} = (\Gamma, \Omega, \Pi, X)$
 - Γ is the non-empty and decidable set of $constant \ symbols$
 - $-\Omega$ is the disjunctive union of the finite sets of n-ary functional symbols
 - Π is the disjunctive union of the finite sets of n-ary predicate symbols
 - -X is the enumerable set of variables

ð 4.0 Summary Last Lecture

- A well-formed **term** may consist of constant symbols, function symbols, and variables
 - E.g., f(a, f(a, b)) with $\Gamma = \{a, b\}, \Omega = \{f\}$
 - Terms can be used in other terms or atomic formulae
- A well-formed atomic formula includes a single predicate symbol
 - E.g., p(a, f(a,b)) with $\Gamma = \{a, b\}, \Omega = \{f\}, \Pi = \{p\}$
 - Atomic formulae cannot be used in other terms or atomic formulae
 - Logical junctors and quantifiers can be used to built non-atomic formulae

• Basic **distinction** between terms and formulae

A term represents some object on which propositions can be made

- A term itself is neither true nor false
- E.g., with interpretation a=1, b=2 and f='+' the term f(a, f(a,b)) represents the number '4'
- A formula represents such a proposition
 - A formula can be either true or false
 - A predicate is a kind of 'truth function'
 - E.g., with interpretation a=1, b=2, f='+' and p='<' the formula p(a, f(a,b)) represents a **true** proposition

3.0 Summary Last Lecture

- Given is a set of formulae $oldsymbol{\mathcal{W}}$
 - A model of $\boldsymbol{\mathcal{W}}$ is an interpretation I such that all formulas in $\boldsymbol{\mathcal{W}}$ evaluate to true with respect to I
- If *W* has a model, it is called satisfiable
 - If *W* has no model, it is called unsatisfiable or inconsistent
 - If two formulas always evaluate to the same truth value given any interpretation I, they are called semantically equivalent

4.0 Summary Last Lecture

- If every possible interpretation is a model of *W*, the formulas W in *W* are called **tautologies**
 - Sometimes also called valid
 - Denoted by ⊧W
 - Tautologies can be used to provide transformation
 - rules for generating semantically equivalent formulas

4.0 Summary Last Lecture

All first-order logic expressions

 You might think of the negation as mirror operation along the red-dotted line

4.0 Summary Last Lecture

- A formula W is a semantic conclusion of W, iff every model of W is also a model of W
 - $-\mathcal{W} \models W$ (W semantically follows from \mathcal{W})
 - Test for $\mathcal{W} \models W$: show that $\mathcal{W} \cup \{\neg W\}$ is unsatisfiable
 - Testing unsatisfiability is generally quite difficult due to the unlimited number of possible interpretations
- Idea: Herbrand Interpretations
 - Herbrand interpretations interpret each constant and each closed formula on mirror of itself
 - Purely symbolic interpretations, as such they represent some kind of a worst case scenario

3 4.0 Summary Last Lecture

- Clauses are special formulas containing only disjunctions of positive or negative literals
 Horn clauses contain at most one positive literal
- Lemma: Given a set of **clauses W**
 - $-\mathcal{W}$ has a model, if and only if \mathcal{W} has a Herbrand model
 - W is unsatisfiable, if and only if W has no Herbrand model
- Open Question: How can Herbrand interpretations help evaluating queries in a deductive DB?

Exercise 2.1

- Using the Hilbert-style proof system show that:
- ⊧A→A
 - Easy trick: use deduction theorem: {A} = A
 - $-\mathbf{W}_1 \equiv \mathbf{A}$ (Hypothesis) $-\mathbf{W}_2 \equiv \mathbf{A}$ (Assertion)
- $\models B \rightarrow ((B \rightarrow A) \rightarrow A)$ - Deduction theorem: $\{B, B \rightarrow A\} \models A$ - $W_1 \equiv B$ (Hypothesis)
 - $\begin{array}{c} W_2 \equiv B \rightarrow A \\ W_3 \equiv A \end{array} \tag{Hypothesis} \\ (MP W_1 \& W_2) \end{array}$

Solutions

- ¬A→ ¬B
 - $-AV \neg B$ (is also a Horn clause)
- $\neg A \rightarrow C$ - A V C (is not a Horn clause)
- B \(C \V D)
 - (BAC) V (AAC) (cannot be a clause)

- To check if a Herbrand Interpretation is a Herbrand model, check if all formulas in *W* are true if interpretation is applied
 - a) Not a model as 2nd formula is not true
 - b) Is a model
 - c) Not a model as no formula is true

• With the **logical tools** a given above we can for example model a normal **relational database**

- A relational database consists of

- a relation schema describing the syntactical form of data together with the necessary integrity constraints
- The actual data instance

· How can we model this with logic?!

- A relational database is a triple DB=(L, C, F)
 L is a language of first order predicate logic with an empty set of function symbols
 - C is a finite set of closed formulae over L, called integrity constraints
 - $-\mathcal{F}$ is a finite set of ground atoms of \mathcal{L} , called facts
- The **relational schema** (*L*, *C*) consists of a signature and integrity constraints
- *F* is the set of actual data

Detour

• Example database $\mathcal{DB}_{uni} = (\mathcal{L}, \mathcal{C}, \mathcal{F})$

- \mathcal{L} is given by Γ ={204, 207, 208, Anne Huber, Peter Meier, Michael Schmidt, Braunschweig, Hannover, Computer Science, Math}, Ω ={}, Π ={student, course}, X={ x_1, x_2, x_3, x_4 } - C is given by
- $\forall x_1 \forall x_2 \forall x_3$ (student(x_1, x_2, x_3) → $\exists x_4$ course(x_1, x_4)) - \mathcal{F} is given by

student(204, Anne Huber, Braunschweig). student(207, Peter Meier, Hannover). student(208, Michael Schmidt, Braunschweig). course(204, Computer Science). course(207, Math). course(208, Computer Science).

4.1 Queries

- Of course the database can also be queried
 - For instance 'Which students do not study math?'
 - Queries are translated into formulae that may contain free variables
 - $\exists x_1 \exists x_3 (student(x_1, x_2, x_3) \land \neg course(x_1, Math))$ • If there are **no free variables** the answer is generally either **true** or **false**
 - If there are free variables the answer is given by all substitutions for these variables that make the statement true
 - $-x_2 = Michael Schmidt$

A.I Queries

- But such queries can be **difficult** to answer
 - For instance 'Who is not a student?'
 - $\neg (\exists x_1 \exists x_3 student(x_1, x_2, x_3))$
 - Answer is the (possibly infinite) complement of our three students???
 - Remember: databases follow the closed world assumption

Detour

A.I DB-Formulae

- For any relational database DB=(L, C, F) we define a database formula as
 - Every atomic formula over ${\cal L}$ is a database formula
 - If G, G₁ and G₂ are database formulae, so are \neg G, (G₁ \land G₂) and (G₁ \lor G₂)
 - If A is an atomic database formula with variables $\{x_1, ..., x_n\}$ and G is a database formula, then also $\forall x_1 \forall x_2 ... \forall x_n (A \rightarrow G)$ and $\exists x_1 \exists x_2 ... \exists x_n (A \rightarrow G)$ and $\exists x_1 \exists x_2 ... \exists x_n (A \rightarrow G)$ and $\exists x_1 \exists x_2 ... \exists x_n (A \rightarrow G)$

4.I DB-Formulae

- Every integrity constraint is simply a closed database formula
- Every **query** Q either...
 - Is also a **closed** database formula (answered with true/false)
 - Or has free variables $\{x_1,...,x_n\}$ such that the formula $\exists x_1 \exists x_2 \ldots \exists x_n (Q)$ is a closed database formula
 - If Q deals with some predicate p this compares to the ${\color{black}{\textbf{SQL}}}$ statement SELECT $x_1,...,x_n$ FROM p
 - With a closed formula G the query $(Q \land G)$ compares to the ${\pmb{SQL}}$ statement SELECT $x_1,...,x_n$ FROM p WHERE G

- With our definition of database formulae we can respect the closed world assumption
 - Consider the query Q := course(208, Math)
 - We can deduce neither $\mathcal{F} \models Q$, nor $\mathcal{F} \models \neg Q$
 - There **exist** models for \mathcal{F} , where Michael Schmidt studies only computer science and other models where he studies both math and computer science
 - Deduction cannot make statements about what is **not** in the database

- · Following our definition of a database formula also integrity constraints are special cases of queries
 - Closed database formulae
 - A relational database is called consistent, if C can be derived from ${\cal F}$ for all $C \in \mathcal{C}$

- Let's have a look on our example database \mathcal{DB}_{uni}
 - $\boldsymbol{\mathcal{F}} \models \forall x_1 \forall x_2 \forall x_3 (student(x_1, x_2, x_3) \rightarrow \exists x_4 course(x_1, x_4))$
 - $\Leftrightarrow \boldsymbol{\mathcal{T}} \models \neg \exists x_1 \exists x_2 \exists x_3 (student(x_1, x_2, x_3) \land \neg \exists x_4 course(x_1, x_4)) \\ \Leftrightarrow \boldsymbol{\mathcal{T}} \models \exists x_1 \exists x_2 \exists x_3 (student(x_1, x_2, x_3) \land \neg \exists x_4 course(x_1, x_4)) \\ \end{cases}$ $\Leftrightarrow \mathbf{\mathcal{F}} \not\models \exists c_1 \exists c_2 \exists c_3 (student(c_1, c_2, c_3) \land \neg \exists x_4 course(c_1, x_4))$ with ground terms c_1, c_2, c_3 from the database
 - Note: the last statement can only be true, if student(c_1, c_2, c_3) is true • And all such ground terms are explicitly given by ${m F}$
 - Our **definition** of database formulas implies that ground terms for quantified variables can always be taken directly from some facts

• So let's substitute the ground terms...

- And finally...
 - \Leftrightarrow *F* $\models \exists x_4 \text{ course}(204, x_4))$ and $\boldsymbol{\mathcal{F}} \models \exists x_4 \text{ course}(207, x_4))$ and $\mathcal{F} \models \exists x_4 \text{ course}(208, x_4))$
 - The last set of statements again can directly be verified from $\boldsymbol{\mathcal{F}}$ and thus our database is **consistent**

A.I Model

Detour

- By binding our ground terms to the database facts we have in fact given a (finite) **Herbrand base**
 - The **intended model** of any relational database $\mathcal{DB} = (\mathcal{L}, \mathcal{C}, \mathcal{F})$ is a Herbrand interpretation $\mathcal{H}_{\mathcal{L}}(\mathcal{F})$ represented by the ground atoms in \mathcal{F}
 - If $\mathcal{DB} = (\mathcal{L}, \mathcal{C}, \mathcal{F})$ and F a closed database formula then $\mathcal{F} \Vdash F$, iff $\mathcal{H}_{\mathcal{L}}(\mathcal{F}) \vDash F$

- Hence instead of modeling facts as **ground atoms** \mathcal{F} , an alternative is modeling facts as \mathcal{L} -interpretation I with $I \models \mathcal{C}$

A. I Views

- The model of the database can even be specified by **other formulae** (together with the ground atoms)
 - This reflects the idea of **views** in relational databases
 - Example: for our \mathcal{DB}_{uni} we could add another predicate math-student by adding the formula
 - $\forall x_2 \forall x_3 (\exists x_1 (student(x_1, x_2, x_3) \land course(x_1, Math))) \\ \rightarrow math-student(x_2, x_3))$
 - This derives name and address of all students studying math
 - The new formula can be either derived at query time, or can be calculated once and stored as additional ground atoms ('materialized' view)

- · Finally: Herbrand's theorem
- · Evaluation of deductive database queires
- Datalog

