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3. Models

• Short summary from last lecture

– Language ℒ = (Γ, Ω, Π, Χ)
• Γ constant symbols

• Ω function symbols

• Π predicate symbols

• Χ variable symbols

– Languages are only syntax and have absolutely no 
meaning.

– Further building blocks of languages are terms

• Will be interpreted as an entity of the universe of discourse

– Predicates may be combined with terms into formulas

• Formulas may be quantified or concatenated with connectives
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3.0 Summary of Last Lecture

– Interpretation I=(U, IC, IF, IP)

• U universe of discourse

• IC constant symbol mapping

• IF functional symbol mapping

• IP predicate symbol mapping

– Interpretations are needed to evaluate and 

interpret the individual components of a language

– Furthermore, we need variable assignment ρ

• Variable assignments may change very frequently within a 

single application session
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3.0 Summary of Last Lecture

• Again:  What‟s the trick with interpretations?
– Consider W ≡ ∀x (p(x, b, a) → q(a, x)) 

• True or false? The interpretation determines!

– Interpretation 1:
• IC : Γ → U,  *a↦ Argo the Cat, b↦Food}
• IP (p) := *(m, n, o) ∈ U3 | “m gives n to o” + ⊆ U×U×U
• IP (q) := *(m, n) ∈ U2 | “m loves n” + ⊆ U×U
• “Argo the Cat loves everybody who gives him food” is true

– Interpretation 2:
• IC : Γ → U,  *a↦ 10, b↦5+
• IP (p) := *(m, n, o) ∈ U3 | m+n>o + ⊆ U×U×U
• IP (q) := *(m, n) ∈ U2 | m<n + ⊆ U×U
• “∀x ((x+5> 10) → (10< x))” is obviously not true
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3.0 Summary of Last Lecture

• Design a first order language for simple 

arithmetic‟s on natural numbers.  One should be 

able to add numbers, subtract numbers, 

multiply number, decide if a number is equal

another number, and if a number is greater than 

another number.
• Γ := *0, 1, 2, 3, …+

• Ω := {+, -, *}

• Π := * <, = +

• Χ := {x, y, z}
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Exercise 2.1
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• Provide an interpretation

– ℒ = (Γ, Ω, Π, Χ)
• Γ := *0, 1, 2, 3, …+,    Ω := {+, -, *}, 

Π := * <, = +,     Χ := {x, y, z}

– I=(U, IC, IF, IP)
• U := ℕ

• IC : Γ → U,  *0↦0, 1↦1, 2↦2, 3↦3, …+

• IF (+) : U×U → U, (n, m) ↦ n + m

• IF (*) : U×U → U, (n, m) ↦ n * m

• IF (-) : U×U → U, (n, m) ↦ n – m

• IP (<) := *(n, m)∈ U2 | n < m+ ⊆ U×U

• IP (=) := *(n, m)∈ U2 | n = m+ ⊆ U×U
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Exercise 2.2

• We use infix notation in the following:

– 5 is greater than 2:  5>2  (prefix: >(5, 2))

– If x is greater than 0, then also x*y is greater than 0:  

x > 0  →  x*y > 0

– x is either greater than y, or x is equal to y, or x is 

smaller than y:

x > y  ⋁  x = y  ⋁  y > x

– The sum of any two numbers is always smaller than 

the product of the same two numbers

∀ x, y (x*y > x+y)
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Exercise 2.3

• Which statements are true? Provide an example 

substitution.

– 5>2:  true 

– x > 0  →  x * y > 0:  Possibly true; ρ(y)=1 ρ(x)=1 

– x > y  ⋁  x = y  ⋁  y > x :   true 

– ∀ x, y (x*y > x+y):   not true; ρ(y)=1 ρ(x)=1
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Exercise 2.4

• Which are formulas?
• Γ := {a, b},    Ω := {f(x), g(x,y)}, 

Π := *P, Q(x, y), R(x)+,    Χ := {x, y}

– f(g(x, y)):  no formula (it‟s a term)

– P:  formula

– Q(x, y)⋁ Q(a, b):  formula

– Q(g(f(a), x), f(y)):  formula

– ∀a (R(a)):  no formula (a is constant)

– ∃x (f(x)) :  no formula (f(x) is no formula)

– R(x) → ¬ R(x) :  formula

– ¬ R(¬ R(f(x))) :  no formula (predicate in predicate does 
not work)

Knowledge-Based Systems and Deductive Databases – Wolf-Tilo Balke – IfIS – TU Braunschweig 10

Exercise 3.2

• Roadmapfor the immediate future…

– Why do we need to bother with 

languages, interpretations, and formulae? 

• Logic forms the basic building blocks of a 

knowledge base, because…

– A knowledge base should be storage efficient

– A knowledge base should be easily extensible

• Deductive databases implement these ideas
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3.1 Roadmap

• Consider an example:  store a family tree

– Important for finding genetic predispositions

– E.g., Disease X is a risk, if two certain gene variants 

Q1 and Q2 are inherited from your parents

– Needed:children names, all parent‟s 

names, and the known possession 

of the specific gene variants

• These are basic facts that cannot 

be derived from anything else
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3.1 Example
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– Store it in a relational database

• Store the parents and their known genetic risk factors for 

all persons in a database

• Is John at risk? Can we write some SQL query?
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3.1 Example

Disease X Name Parent Q1 Q2

John Mary Yes No

John Thomas NULL NULL

Mary Peter NULL NULL

Mary Karen No No

Thomas George No Yes

Thomas Sonja NULL NULL

George Peter KarenSonja

Thomas Mary

John

Q1

Q2

– Query for parents with predisposition

• (SELECT name FROM DiseaseX WHERE Q1=‘Yes’) INTER-
SECT (SELECT name FROM DiseaseX WHERE Q2=‘Yes’) 

– But what if John could inherit from all ancestors? 
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3.1 Roadmap

Disease X Name Parent Q1 Q2

John Mary Yes No

John Thomas NULL NULL

Mary Peter NULL NULL

Mary Karen No No

Thomas George No Yes

Thomas Sonja NULL NULL

George Peter KarenSonja

Thomas Mary

John

Q1

Q2

• Obviously this needs an extension of our 

model…

– Well, storing (Name, Ancestor, Q1, Q2) would do 

the trick

• But this is not merely an extension, but would need a 

change of the database schemaé

• And the actual extension needs to change the database 

content (who are ancestors?)…

• And needs a lot more storage space…

• And opens the door for possible 

inconsistencies…
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3.1 Example

• Relational databases may not be the prime choice 

for our problem set

– Two kinds of knowledge

• Static knowledge as given by tables

• Derived knowledge as given by view mechanism

– Queries in a declarative query language

– Formal semantics is relational algebra

– Class of completeness: relational complete 

• Especially: there is a problem with recursive views
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3.1 Relational vs. Deductive

• We know rules to derive further knowledge from 
the basic knowledge about parentage

– Deduction rules
• Persons have a name, a parent, and genetic predispositions 

• All parents of Persons are Ancestors.

• All parents of Ancestors are Ancestors.

• For all Persons there is a Risk, if some Ancestor has Q1 and 
some Ancestor has Q2

– These are formulae over the 
predicates Person, Ancestor 
and Risk

– Formulae represent relationships between 
real world objects
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3.1 Relational vs. Deductive

• Predicates + formulae are the database schema

• Deductive databases consist of two major parts

– The extensional database (EDB)

• Fact collection as a (non-redundant) set of basic knowledge 
(facts, axioms)

• The instance of data determines what further facts can be 
derived

– The intensional database (IDB)

• Rule collection as a (non-redundant) set of ways to derive 
new knowledge   

• The instance of rules determines how further facts can be 
derived
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3.1 Relational vs. Deductive



14.04.2009

4

• A valid question is which interpretation and 

variable substitution make a formula true?

– Well, there are unlimited possible interpretations 

and variable substitutions

• Should we try them all? 

• Does the computation ever end?

– To make it easier: if the formula 

is closed, we can abstract from 

the specific variable substitution, 

only the interpretation matters
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3.1 Models

• An interpretation I is called a model of a closed 

formula W, if it evaluates to true with respect to I

– Analogously,  an interpretation I is called a model of a set 

of closed formulas , if I is a model of all W∈

• Example

– W≡ ∀ x ∃y (P(x, y)) 

• Let I be an interpretation which maps P to < on ℕ
Then I is a model of W: W is also called a fact with respect to I

– W≡ ∃ x ∀ y (P(x, y)) 
• Let I be then same interpretation mapping P to < on ℕ

Then I is not a model of W
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3.1 Models

• Now an interesting question arises for the 

evaluation of a set of closed formulas 

– Given a set of formulas, does it have a model? 

• is called satisfiable (or consistent, contradiction-free), 

iff has a model

• is called unsatisfiable (or inconsistent, contradictive),

iff does not have any model

– We can immediately stop the 

evaluation of any unsatisfiable 

set
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3.1 Models

• What is the connection between satisfiability of 

a set of formulae and inference? 

–Remember Aristotle‟s principle of the indirect proof 

(reductioad absurdum)

• We want to prove (infer) a statement W using a set of 

propositions 

• If we assume that (¬W) holds and show a 

contradiction to some statement in ,
the proof is complete 

• That means ⋃ {¬W} is unsatisfiable 
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3.1 Models

• Remember: we want to 

define concepts over 

basic fact data

• Natural question: do two 

concepts describe the same idea?

– Two closed formulas W1 and W2 are semantically 

equivalent, iff I(W1)=I(W2) for all I

– It does not matter what interpretation we use, the 

evaluation of the two formulas is always the same
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3.1 Semantic Equivalence

• Another natural question: can a certain fact be 

deduced from some given fact set?

– A formula W is a semantic conclusion of a set of 

formulas , iff every model of is also a model of 

W

• may contain additional or broader concepts, but every 

interpretation that makes true, also makes the „smaller‟ 

concept of W true 

– This is denoted by ⊧W (W follows from )
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3.1 Semantic Conclusions
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• Both questions are important for 

retrieval efficiency

– We aim at creating a deductive system which starts 

with a small set of facts to avoid inconsistencies

• All derived knowledge will be generated at query time

– But we also want to describe all necessary concepts 

with a small set of rules to speed up response time

• All rules need to be evaluated, redundant rules waste time
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3.1 Retrieval Efficiency

• Lemma:

– If it can be deduced from that the opposite of W
follows ( ⊧¬ W), then ⋃ *W+ is unsatisfiable

(and vice-versa)

• Thus, unsatisfiability of a set of closed formulas 

can be proven by finding a single formula 

W from the set such that it‟s opposite follows 

from the remaining formulas

–Test them all?! Seems a rather theoretical result…
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3.1 Test for Unsatisfiability

• Finally there even are formulas for which every 

interpretation is a model

– is called universal, iff every interpretation is a 

model of (denoted by ⊧ ) 

– then is a referred to as tautology
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3.1 Tautologies

• Now, what are tautologies?

– Tautologies are always true, whatever interpretation is 
used
• Thus, they are true independently of their actual content

– The set of all tautologies is thus very interesting, as it 
contains all universal statements
• Those are also true for any specific, given interpretation and may 

thus form a great tool for reasoning

– Example for tautologies

• W ⋁ ¬W

• W1 ⋀ W2 → W1

• (W1 → W2) ⋀ (W2→ W3) → (W1 → W3) 

• “To be or not to be”
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3.1 Tautologies

• Tautologies can be used to derive semantic 

equivalences which can be used as transformation 

rules

–Proof by truth diagram…

– A ≡¬¬A

– A ⋀ B ≡ B ⋀ A 

• A ⋁ B ≡ B ⋁ A 

– A ⋀ (B ⋁ C) ≡ (A ⋀ B) ⋁ (A ⋀ C) 

• A ⋁ (B ⋀ C) ≡ (A ⋁ B) ⋀ (A ⋁ C) 
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3.1 Tautologies 

– ¬(A ⋀ B) ≡ (¬ A) ⋁ (¬ B) 

• ¬(A ⋁ B) ≡ (¬ A) ⋀ (¬ B) 

– A→ B≡ (¬A) ⋁ B

• A ⋀ B ≡ ¬ (A → (¬ B))

• A ⋁ B ≡ (¬ A) → B

– A ↔ B ≡ (A → B) ⋀ (B → A)

– ∀x (P(x)) ≡ ¬∃x (¬P(x))  

• ∃x (P(x)) ≡ ¬∀x (¬P(x))    
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3.1 Tautologies 
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• Is there a way to find the set of all tautologies?

– Thus, finding all universal truth?

– Also, this can be used to prove if a 

statement is universally true.

• There are two (equivalent) approaches

– Model-theoretical: Is a formula true in all possible 

worlds, i.e. is any interpretation a model?

• We did that before and will continue after the detour

– Proof-theoretical: Can the truthfulness of a formula 

be proven by some rules and axioms?
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3.2 Deduction Systems

• In this detour, we will focus on the second 

approach in form of proof systems and 

deductive systems

– Made popular by David Hilbert during his efforts to 

formalize all math

–Is a “mechanical” system for proving and generating of 

universally true statements from axioms and rules
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3.2 Deduction Systems

• Who is David Hilbert?

– Probably one of the most influential
mathematicians of the early 20th century

– Significant pioneer work in proof theory, logics, 
meta-mathematics

• Main interest: Stronger focus on formalization, 
understandability and provability

– Born 1862 in Königsberg, in 1895 became chair 
of the Math Department in Göttingen

– Around 1910, Hilbert moved to theoretical physics

• é and brought them the joy of logics and formalism
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3.2 Deduction Systems

• Göttingen was the most renowned 
University for Mathematics at that time

– Brought to fame by Carl Friedrich Gauss and 
Bernhard Riemann

– Most fundamental work in modern math was performed 
there

– Just somepeople around in Hilbert‟s later years: Emmy 
Noether,  Alonzo Church, John von Neumann, Wilhelm 
Ackermann, …

– Unfortunately, in 1933 most of 
the department fell victim to a 
Nazi swipe
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3.2 Deduction Systems

• The Hilbert Program
– Started by Hilbert around 1920

– Idea: 
• Formalize all existing theories to finite, complete set of axioms

• Proof that these axioms are consistent

– Goals
• Preciseness: Use precisely defined formalisms and mechanisms

• Completeness:  Show that all math can be proved by the system

• Consistency: No contradictions will show up in the system

• Decidability: For every statement, an algorithm can decide if it is true 
or not

– But we remember: The Gödel incompleteness theorem
made the Hilbert program impossible in this form in 1933
• Slight changes  to the mission statement lead it to success.

• Tools still remain
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3.2 Deduction Systems

• So, now we also want create a deductive 
system in Hilbert style

• First, we need some theorems:

• Deduction theorem

– ⋃  *W1 + ⊧ W2 holds if and only if ⊧ W1 → W2

– W2 follows from W1 and iff W1 → W2 follows from 

– The deduction theorem is considered a 
“fundamental” meta-rule which is true in each 
deductive theorem, but is not a theorem within the 
system itself
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3.2 Deduction Systems
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• Modus Ponens

– Already introduced by Aristotle

–òmode that affirms by affirmingó

– {W1, W1 → W2 + ⊧ W2

– If W2 follows from W1 and W1 is true, also W2 is true

– Example: 

• Rule:  “If it is Tuesday, then there is a KBS lecture.” 

• Fact:  “Today is Tuesday.”

• Derived fact:  “Thus, today is a KBS lecture.”
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3.2 Deduction Systems

• One can prove that Modus Ponens is universally  sound

– i.e. it never generates incorrect knowledge 

• In contrast consider the popular abduction inference 
rule

– {W1 → W2, W2+ ⊧ W1

– Abduction often useful, but not sound

– Example
• Rule:  “If it has rained, the street is wet.” 

• Fact:  “The street is wet.”

• Derived fact:  “Thus, it has rained”

– Example
• Fact:  “A patient has red dots in the
face and high fever…”
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3.2 Deduction Systems

• An Hilbert-Style deductive system for a language 
ℒ consist of

– A set of formulas of  ℒ called logical axioms

• All other statements can be followed from the axioms

• It cannot be proved within the system if they are true or 
not, they are just “given”

• If you want to prove or deduce only tautologies, also your 
axioms need to be tautologies

• Hilbert system use extreme numbers of axioms, thus they 
are also called axiomatic systems

– A set of inference rules

• Rules transform one statement into a new one
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3.2 Deduction Systems

• Example: deductive system

– Axioms:  axioms are all well-formed formulae of ℒ which 
are instances of one of the following schemas 
• A1: A→ (B→ A)

• A2:  (A→ (B→ C)) → ((A→ B) → (A→ C))

• A3: (¬A → ¬B) → (B→ A)

• Thus, all axioms are tautologies

– This system can be extended with additional axioms types 
to also cater for predicates and quantifiers

– Thus, there are an unlimited number of axioms
• Frog(Hector)→(Lake(Hector)→Frog(Hector)) (Type A1)

• ¬A → (¬¬ A→ ¬A ) (also Type A1)
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3.2 Deduction Systems

– As the only rule, we use modus ponens

• *A,  A → B + ⊧ B 

– Modus ponens is usually enough for all axiomatic 

deductive systems

• It can be shown that additional rules do not provide 

additional expressiveness

• …but may be used for convenience 
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3.2 Deduction Systems

• The axioms and rules contain only formulas using 

Ÿ and ¬

– But by using the equivalence rules, all other formulas 

with ⋀, ⋁, or ź can be transformed to only use Ÿ

• A ⋀ B ≡ ¬ (A → (¬ B))

• A ⋁ B ≡ (¬ A) → B

• A ↔ B ≡ (A → B) ⋀ (B → A)
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3.2 Deduction Systems
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• Are those axioms really tautologies?

– A1: A→ (B→ A)

– A3:  (¬A → ¬B) → (B→ A)
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3.2 Deduction Systems

A B B→ A A→ (B→ A)

0 0 1 1

0 1 0 1

1 0 1 1

1 1 1 1

A B ¬A → ¬B B→ A A3

0 0 1 1 1

0 1 0 0 1

1 0 1 1 1

1 1 1 1 1

• Deductive systems now generate proofs

– If you want to prove that a statement A is satisfiable 

or a tautology, you construct a prove which ends with 

statement A

• A proof from a set to A in a deductive system 

is a finite sequence W1, ..., Wn of formulas of ℒ
such that Wi is either an axiom, is in , or 

follows from one of the previous Bj by the 

inference rules

– is the set of hypothesis from which A follows
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3.2 Deduction Systems

• Example Proof: 

– Is ¬B → (B→ A) a tautology?

• i.e.  ⊧ ¬B → (B→ A) ?

– By using the deduction theorem, we get

• ¬B  ⊧ (B→ A)

– W1≡ ¬B (Hypothesis)

– W2≡ ¬B →  (¬A  →  ¬B) (Axiom 1)

– W3≡ ¬A  →  ¬B (MP of W1  and W2)

– W4≡ (¬A  →  ¬B) → (B → A) (Axiom 3)

– W5≡ B → A (MP of W3  and W4)
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3.2 Deduction Systems

• Fun Proof:

– ¬¬A ⊧ A ?

– W1≡ ¬¬A  (Hypothesis)

– W2≡ ¬¬A → (¬¬¬ ¬ A→ ¬¬A ) (Axiom 1)

– W3≡ ¬¬¬ ¬ A→ ¬¬A (MP W1 & W2)

– W4≡ (¬¬¬ ¬ A→ ¬¬A) → (¬A → ¬¬¬ A)     (Axiom 3)

– W5≡ ¬ A→ ¬ ¬ ¬A (MP W3 & W4)

– W6≡ (¬ A→ ¬¬¬A) → (¬¬A → A) (Axiom 3)

– W7≡ ¬ ¬ A→ A (MP W5 & W6)

– W8≡ A (MP W1 & W7)
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3.2 Deduction Systems

• Hilbert-style deduction has several drawbacks
– Few rules, but many axioms

• This is quite the opposite of what we want in a deductive 
database (e.g. the system of this detour has a unlimited, 
enumerable number of axioms…) 

– Finding a proof is very tricky 
• It‟s hard to see when which axioms are needed to complete the 

proof

• Thus, often we just end up doing trial & error
– This is not what we want to a database

– Feels unnatural
• Many people felt that this kind of deduction is very unnatural and 

does not resemble the way how a mathematician would perform 
a proof 
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3.2 Deduction Systems

• Better Idea: Natural Deduction

– Use more rules, but a limited set of axioms

– Most famous natural deduction calculus introduced by 

the Göttinger mathematician Gerhard Gentzen

• Gentzen Sequence Calculus, developed in 1938

• “Ich wollte zunächst einmal einen Formalismus aufstellen, 

der dem wirklichen Schließen möglichst nahe kommt. So 

ergab sich ein ‚Kalkül des natürlichen Schließens„ “

– These calculi have, in modified from, later 

been adapted by deductive databases
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3.2 Deduction Systems
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• Wonderful example for Gentzen Calculus goes 

here

• If you can see this slide, please re-download in a 

couple of days and hope that the content has 

been provided
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3.2 Deduction Systems

• Back to our topic…

– A user starts extending concepts for his intensional 

database formula by formula (i.e. closed formulae!)

– For each new formula W we need to test whether 

( ⋃ {W}) is unsatisfiable

• Using our lemma, this can be done by showing that the 

formula ¬W already follows from the set of formulas 

• Which means that every model of is also a model of ¬W

• Which means that all possible interpretations have to 

be tested..?! 

• We are back into the model-theoretical world
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3.3 Test for Unsatisfiability

• Obviously there is an unlimited number of 

possible interpretations…

• Idea: use interpretations that are representative

for the entire class of all interpretations!

– Are there such interpretations?

– For what type of closed formulae?

– For clauses (certain type of closed 

formulae) the Herbrand inter-

pretations are representative
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3.3 Test for Unsatisfiability

• Basically clauses consist of literals

– The set of literals Lℒ consists of all atomic formulae

AÍAℒ and the respective negated atomic formulae ¬A

• The atomic formulae are called positive literals

• The negated atomic formulae are called negative literals

• If some atomic formula does not contain variables, 

it is called a ground literal 

– e.g.:

• A, ¬A, Frog(Hector), ¬Frog(Hector), isGreen(x), 
¬isGreen(x), …
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3.3 Clauses 

• A clause is the universal closure of a disjunction of 
literals
– "(L1ÙL2Ù…ÙLn),       LiÍLℒ

• A Horn clause is a clause that only contains at 
most a single positive literal
– e.g. "(¬A1Ù¬A2Ù…Ù¬An-1ÙAn), AiÍAℒ

– Horn clauses without a positive literal are called goal 
clauses

– Horn clauses with exactly one positive literal are called 
definite clauses

– Horn clauses with one positive but no negative literals are 
called fact clauses
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3.3 Clauses

• So, what is special about horn clauses?

– Remember the transformation rule for semantic 

equivalence:  (¬A) ⋁ B ≡ A→ B

• Thus, definite Horn clauses actually represent an implication

• ¬A1 ⋁ ¬A2 ⋁ … ⋁ ¬An-1 ⋁ An ≡ (A1 ⋀  A2 ⋀ … ⋀ An-1 ) → An
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3.3 Horn Clauses
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• Back to the topic: Define a representative

interpretation which can replace any other

– So called Herbrand Interpretation

• The Herbrand interpretation of an language ℒ
is based on

– Herbrand Universe Uℒ , consisting of all ground 

terms

– Herbrand Base Bℒ, consisting of all ground atoms
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3.3 The Herbrand Universe

• How to construct the Herbrand base Bℒ? 

– Take all the terms of the Herbrand universe and apply

the predicates of the language ℒ to them

– For each predicate symbol there is a (usually infinite) 

number of terms that can be used as argument

• For every P ÍΠ as a n-ary prediacte symbol all 

combinations of n terms ti from the universe Uℒ are used

• P(t1, …, tn) ÌBℒ with tiÍUℒ
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3.3 The Herbrand Universe

• Example

– Given is the language ℒ
• Γ := {a, b}, Ω := *f, g+, Π := *P+, Χ := {}

– The Herbrand universe thus is

• Uℒ = *a, f(a), g(a), f(f(a)), f(g(a)), …+ ⋃ 
*b, f(b), g(b), f(f(b)), f(g(b)), …+ 

• All terms which can be generated by using the function and 
constant symbols

– The Herbrand base is

• Bℒ = *P(a), P(f(a)), P(g(a)), P(f(f(a))), P(f(g(a))), …+ ⋃ 
*P(b), P(f(b)), P(g(b)), P(f(f(b))), P(f(g(b))), …+ + 

• All ground atoms which can be generated using the universe

– i.e. no variables allowed here

Knowledge-Based Systems and Deductive Databases – Wolf-Tilo Balke – IfIS – TU Braunschweig 57

3.3 The Herbrand Universe

– Given a language ℒ which allows following statements 

and Γ:={Hector, green}, Ω := {hasColor}, 
Π := {Frog, equals}

• W≡ ∀x (Frog(x) → equals(hasColor(x), green))

• Uℒ = {Hector, hasColor(Hector), 
hasColor(hasColor(Hector)), …+  ⋃ 
{green, hasColor(green), hasColor(hasColor(green)), …+

• Bℒ = {Frog(Hector), Frog(hasColor(Hector)), …+ ⋃ 
{Frog(green), Frog(hasColor(green)), … +  ⋃ 

{equals(Hector, green), equals(hasColor(Hector), green), 
…+ ⋃ … 

Knowledge-Based Systems and Deductive Databases – Wolf-Tilo Balke – IfIS – TU Braunschweig 58

3.3 The Herbrand Universe

• Finally, an Herbrand interpretation 
I=(U, IC, IF, IP) is given by

– U = Uℒ

• The Herbrand universe is used as universe

– IC(c) := c 
• Thus, any constant symbol c ∈ Γ is interpreted by itself 

– IF (f): Uℒ ×…× Uℒ → Uℒ , f(t1,…,tn) ↦ f(t1,…,tn) 
• Any functional symbol f ∈ Ω is interpreted by itself

– Each language entity is mapped to an equivalent universe 
symbol

• Thus, we create a completely symbolic interpretation without 
a specific real-world semantics
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3.3 The Herbrand Universe

• Example:

– An Herbrand Interpretation evaluates the term 

f(g(a)) to f(g(a)) ∈ Uℒ

– Given a substitution ρ(x)=g(f(b)), the term f(x)
evaluates to f(g(f(b)))∈Uℒ

– Keep in mind that the term f(g(a)) and the universe 

element f(g(a)) are not the same although they look 

the same!

• One actually means something, the other is just a symbol
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3.3 The Herbrand Universe
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• U, IC, and IF are the same for all 
Herbrand interpretations

• Herbrand interpretations only differ with respect to 
the predicate interpretation IP

– For two different Herbrand interpretations, P(a) might be 
true in one and false in another

– Thus, Herbrand interpretation can be defined by listing 
all atoms from the base which evaluate to true

• A Herbrand interpretation can identified with a subset of the 
Herbrand base and vice versa

• e.g. Herbrand Interpretation I1 = {P(a), P(f(a))},
Herbrand Interpretation I2 = {P(g(a)), P(g(b))} 
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3.3 The Herbrand Universe

• A Herbrand Model of a set of formulas is a 

Herbrand interpretation, which is a model of 

• Example: W ſ∀x,y(loves(x, y)Ÿloves(y, x))

– … language ℒ is implicitly given

– I1:= {loves(Tarzan, Jane),  loves(Jane, Tarzan)}

• I1  is a Herbrand Model (remember, closed world!)

– I2:= {loves(Tarzan, Jane),  loves(Jane, Paul D’Arnot)}

• I2  is not a Herbrand Model
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3.3 The Herbrand Universe

• Lemma

– Given a set of clauses

• has a model, if and only if has a Herbrand model

• is unsatisfiable, if and only if has no Herbrand model

– That means that all symbols in a (set of) clause(s) can 

be interpreted in a purely syntactical way 

• If there is a syntactic possibility to satisfy the clause(s), 

there will also be some (more or less useful) semantic 

interpretation
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3.3 The Herbrand Universe

• Using this lemma, we can finally test the 

unsatisfiability of  ⋃ {W}

– Remember: we have to show ⊧¬W

– But now, we just have to show the existence/ 

nonexistence of a single Herbrand model 

instead testing all existing models

• But careful, this lemma only works for clauses, not for 

general closed formulas
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3.3 The Herbrand Universe

• So... How do Herbrand models help? 

– They are just a syntactical interpretation without any 
relation to the real world…? 

– Can‟t I always construct a Herbrand model for a satisfiable 
formula?

• Consider this:

– We want to build a deductive database.

– So, we need rules how to use the data within a database 
to construct Herbrand interpretations!

– If a Herbrand interpretation constructed by the symbolic 
data of a DB is also a model, it can be used
to for further evaluation and querying!
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3.3 The Herbrand Universe

• Herbrand Theory

– Why and how do Herbrand interpretations work?

• Database Clauses

– How does data relate to models, 

interpretations, and rules?

• Datalog

– How can we work with 

deduction in a database? 
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Next Lecture


