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Systems - 2

@ 3.0 Summary of Last Lecture @ 3.0 Summary of Last Lecture
* Short summary from last lecture — Interpretation I=(U, I, I I;)
— Language L= (T,Q, I, X) « U universe of discourse
* T constant symbols * I constant symbol mapping

* Q function symbols
* IT predicate symbols
* X variable symbols

* Ig functional symbol mapping

* Ip predicate symbol mapping

— Languages are only syntax and have absolutely no — Interpretations are needed to evaluate and
meaning. interpret the individual components of a language
— Further building blocks of languages are terms — Furthermore, we need variable assignment p

* Will be interpreted as an entity of the universe of discourse + Variable assignments may change very frequently within a
— Predicates may be combined with terms into formulas single application session

» Formulas may be quantified or concatenated with connectives
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@ 3.0 Summary of Last Lecture @ Exercise 2.1 so“l"ons

*Again: What®"s the tric * Design a first order language for simple
~ Consider W= X (p(x,b, 2) - q(a,)) arithmetic"s on natur

* True or false? The interpretation determines!
— Interpretation I: able to add numbers, subtract numbers,
multiply number, decide if a number is equal

¢ Ic: T > U, {am Argothe Cat,b~Food}
¢ I (p) :=={(m,n, 0) € U3 | “m gives n to 0” } € UxUxU

« I, (q) i= {(m,n) € U? | “m loves n" } € UXU another number, and if a number is greater than
“Argo the Cat | oves evemngbod another number.
— Interpretation 2: e [i=
« I:T > U, {a»10,bm5} r={1 i %)
« Ip (p) = {(m,n, 0) € I3 | m+n>0} € UxUxXU s =457
* I (q) :={(m,n) EU2| m<n} € UxU ci={<,=}
* “Vx((x+5>10) - (10<x))”is obviously not true e X:={xy,7}
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@ Exercise 2.2 sol"tioﬂs @ Exercise 2.3 s‘""liom

* Provide an interpretation
-£L=(T,0,1,X)
+T:={0,1,2,3,..}, Q:={+-%,

* We use infix notation in the following:
— 5 is greater than 2: 5>2 (prefix: >(5,2))

Mi={<, =}, Xi={xyz} — If x is greater than 0, then also x*y is greater than 0:
=} Xi={&y *
—1=(U, 1o Ip Ip) x>0 - x*y>0
«U:=N — X is either greater than y, or x is equal to y, or x is
¢+ 1;:T> U, {0~0,1-1,252,303,...} smaller than y:
*I;(#):UxU->U,(n,m)»n+m x>y Vx=yVy>x

cI;(®:UxU-U,(n,m)»n*m
*Ig():UxU->U,(n,m)»n-m
* Ip(<):={(n,m)eU?| n<m} S UxU
e Ip(=):={(n,m)€U?| n=m} S UxU

— The sum of any two numbers is always smaller than
the product of the same two numbers
v,y (x*y > x+y)

Systems and Deductive TU Braunschwelg, 7 Knowledge-Based Systems and Deductive Databases - Wolf-Tio Balke - IS ~ TU Braunschweig 8

() Exercise 2.4 sol"tioﬂs (D) Exercise 3.2 sol""lms

* Which statements are true? Provide an example * Which are formulas?
substitution. . ﬁ=:== {{?1(32}(»& }%;({)(f)(;()%((xz){iy}
—5>2: true —f(gxy):no formula (it"s a t
—x>0 = x*y>0: Possibly true; p(y)=1 p(x)=1 — P: formula
-x>y Vx=yVy>x: true - Qxy)VQ(a,b): formula
- Vx,y(x*y > x+y): not true; p(y)=1 p(x)=1 ~ Q(g(f(a), %), f(y)): formula

—Va(R(a)): no formula (a is constant)
— 3Ix(f(x)) : no formula (f(x) is no formula)
— R(x) > = R(x): formula

— = R(=R(f(x))): no formula (predicate in predicate does
not work)
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@ 3.1 Roadmap @ 3.1 Example

* Roadmapf or t he i mm

— Why do we need to bother with
languages, interpretations, and formulae?

* Consider an example: store a family tree
— Important for finding genetic predispositions

—E.g., Disease X is a risk, if two certain gene variants
Q, and Q, are inherited from your parents

* Logic forms the basic building blocks of a —Needed:c hi | dren names, all
knowl edge base becau names, and the known possession x(j,,;vf‘iﬂ“'“«’“'a:'u,;g
. of the specific gene variants 5’“ iy Tl'ec’%
— A knowledge base should be storage efficient Th . f g o
* These are basic facts that cannot 3

— A knowledge base should be easily extensible be derived from anything else

* Deductive databases implement these ideas
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@ 3.1 Example

— Store it in a relational database

* Store the parents and their known genetic risk factors for
all persons in a database

* Is John at risk? Can we write some SQL query?

f¥/
2

), George Sonja Peter Karen
John Mary Yes No

Q;
John Thomas NULL  NULL
Mary  Peter NULL  NULL Thorgas Mag
Mary Karen No No 1
Thomas  George No Yes John
Sonja
optems andDeductive i s
@ 3.1 Example
* Obviously this needs an extension of our
model...
— Well, storing (Name, Ancestor, Q,, Q,) would do
the trick

* But this is not merely an extension,but would need a

change of the database sclt

* And the actual extension needs to change the database

content (who are anglstor:
*And needs a | ot mo tor

* And opens the door for possible
inconsistencies ..
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@ 3.1 Relational vs. Deductive

* We know rules to derive further knowledge from
the basic knowledge about parentage
— Deduction rules
* Persons have a name, a parent, and genetic predispositions
* All parents of Persons are Ancestors.
* All parents of Ancestors are Ancestors.
* For all Persons there is a Risk, if some Ancestor has Q, and
some Ancestor has Q,
— These are formulae over the
predicates Person,Ancestor
and Risk
— Formulae represent relationships between
real world objects

Systems and Deductive ~TU Braunschuweig 7
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@ 3.1 Roadmap

— Query for parents with predisposition

* (SELECT name FROM DiseaseX WHERE Q,=‘Yes’) INTER-
SECT (SELECT name FROM DiseaseX WHERE Q,="Yes’)

— But what if John could inherit from all ancestors?

e —
2
No

John Mary Yes

George Sonja Peter Karen
Q;

John Thomas NULL  NULL

Mary  Peter NULL  NULL Thomas, Maty
Mary Karen No No &
Thomas  George No Yes

John
Sonja
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@ 3.1 Relational vs. Deductive

* Relational databases may not be the prime choice
for our problem set
— Two kinds of knowledge
« Static knowledge as given by tables
* Derived knowledge as given by view mechanism
— Queries in a declarative query language
— Formal semantics is relational algebra
— Class of completeness: relational complete
* Especially: there is a problem with recursive views

Knowledge-Based Systems and Deductive Databases ~Wolf-Tilo Balke - IS ~ U Braunschweig 16

@ 3.1 Relational vs. Deductive

* Predicates + formulae are the database schema
* Deductive databases consist of two major parts

— The extensional database (EDB)

* Fact collection as a (non-redundant) set of basic knowledge
(facts, axioms)

* The instance of data determines what further facts can be
derived

— The intensional database (IDB)

* Rule collection as a (non-redundant) set of ways to derive
new knowledge

* The instance of rules determines how further facts can be
derived
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(@) 3.1 Models (@) 3.1 Models

* A valid question is which interpretation and * Aninterpretation I is called a model of a closed
variable substitution make a formula true? formula W, if it evaluates to true with respect to I
— Well, there are unlimited possible interpretations — Analogously, an interpretation [ is called 2 model of a set
and variable substitutions of closed formulas  , if [ is a model of all We
* Should we try them all? * Example

- W=vx3y (Py))
* LetIbe an interpretation which maps P to < on N
Then I'is a model of W: Wis also called a fact with respect to |
- W=3xVvy (P(xy)
* LetI be then same interpretation mapping P to < on N
Then I'is not a model of W

* Does the computation ever end?

— To make it easier: if the formula
is closed, we can abstract from
the specific variable substitution,
only the interpretation matters
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(@) 3.1 Models (@) 3.1 Models

* Now an interesting question arises for the * What is the connection between satisfiability of
evaluation of a set of closed formulas ~ a set of formulae and inference?
— Given a set of formulas, does it have a model? -Remember Ar i st otihdéréctproofr
+” s called satisfiable (or consistent, contradiction-free), (reductiad absurdujn
iffv has a model * We want to prove (infer) a statement W using a set of
. is called unsatisfiable (or inconsistent, contradictive), propositions
iff " doesnot have any model |\ _ v r mew * If we assume that (W) holds and show a
— We can immediately stop the .... ’,. .’ o » contradiction to some statementin
evaluation of any unsatisfiable ® o the proof is complete

et ¥ » That means U {=W} is unsatisfiable
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@ 3.1 Semantic Equivalence @ 3.1 Semantic Conclusions

* Another natural question: can a certain fact be
deduced from some given fact set?

— A formula W is a semantic conclusion of a set of
formulas , iff every model of s also a model of

* Remember: we want to
define concepts over
basic fact data

* Natural question: do two

concepts describe the same idea? w.
. *  may contain additional or broader concepts,but every
_Two-closed fo.rmulas W, and W, are semantically interpretationthatmakes” t rue, al so mak
equivalent, iff [(W,)=I(W,) for all I concept of W true
— It does not matter what interpretation we use, the — This is denoted by~ EW (W follows from ~ )

evaluation of the two formulas is always the same
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() 3.1 Retrieval Efficiency (@) 3.1 Test for Unsatisfiability

&N
. . "
* Both questions are important for A\ * Lemma:
retrieval efficiency N

—If it can be deduced from ~ that the opposite of W

follows (= W), then = U {W} is unsatisfiable
— We aim at creating a deductive system which starts (and vice-versa)
with a small set of facts to avoid inconsistencies

* Thus, unsatisfiability of a set of closed formulas
* All derived knowledge will be generated at query time

can be proven by finding a single formula
— But we also want to describe all necessary concepts Wfrom the set such th
with a small set of rules to speed up response time from the remaining formulas
* All rules need to be evaluated, redundant rules waste time —Test them all 21 Seems a

Systems and Deductive
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@ 3.1 Tautologies @ 3.1 Tautologies

* Now, what are tautologies?

— Tautologies are always true, whatever interpretation is

* Finally there even are formulas for which every
interpretation is a model

used
- Is callgd universal, iff evvery Interpretation is a * Thus, they are true independently of their actual content
model of ~ (denoted by k) — The set of all tautologies is thus very interesting, as it
—  then is a referred to as tautology

contains all universal statements

* Those are also true for any specific, given interpretation and may

N thus form a great tool for reasoning
-y

: \ — Example for tautologies
UNIVERSAL CWVaw

P CWAW,- W,
* (W= W) A (Wy—> Wa) > (W, > Wy)

* “Tobe or notto be”

Systems and Deductive
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@ 3.1 Tautologies

@ 3.1 Tautologies
* Tautologies can be used to derive semantic

- —I(AA B) = (—|A) \' (—| B)
equivalences which can be used as transformation * (AVB)=(=A)A(=B)
rules

_ _ A-B=(=A)VB
—-Proof by trut [% R G *AAB== (A~ (2B)
= A8 < AVB=(~A)>B
“A=mA : ‘ AoB=(A>B)A(BoA
—AAB=BAA - =(A->BA(B-4)
«AVB=BVA

- Vx (P(x)) = -3x (=P(x))

—AA(BVC)=(AAB)V (AAC) * 3x(P9) = ~vx (4P(9)

*AV(BAC)=(AVB)A(AVC)

Balke - IS - TU Braunschuweig
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@ 3.2 Deduction Systems ﬂf}fﬂ"; @ 3.2 Deduction Systems ﬂel‘ﬂ-ll!

* Is there a way to find the set of all tautologies?
— Thus, finding all universal truth? o n

— Also, this can be used to prove if a
statement is universally true.

* In this detour, we will focus on the second

approach in form of proof systems and
deductive systems

— Made popular by David Hilbert during his efforts to
* There are two (equivalent) approaches formalize all math

— Model-theoretical: Is a formula true in all possible -I's

a “mechanical” syste
worlds, i.e. is any interpretation a model?

universally true statements from axioms and rules
* We did that before and will continue after the detour

— Proof-theoretical: Can the truthfulness of a formula
be proven by some rules and axioms?

Systems and Deductive
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@ 3.2 Deduction Systems Detonr

* Who is David Hilbert? Y * Gottingen was the most renowned ! :-!f!

University for Mathematics at that time

— Brought to fame by Carl Friedrich Gauss and
— Significant pioneer work in proof theory, logics, Bernhard Riemann
meta-mathematics

@ 3.2 Deduction Systems Ve[

— Probably one of the most influential
mathematicians of the early 20% century

— Most fundamental work in modern math was performed
* Main interest: Stronger focus on formalization, there

understandability and provability

—Justsomepeopl e around in Hil
— Born 1862 in Kénigsberg, in 1895 became chair Rloetlrer, Alonzo Church, John von Neumann,Wilhelm
of the Math Department in Gottingen crer m.a nn,
_A d 1910, Hilbert moved to theoretical physi — Unfortunately, in 1933 most of
rc?un ’ 9 OYS toENERIEsea PIySICS the department fell victim to a
* € and brought them the joy of logics and formalism Nazi swipe

Systems and Deductive

TU Braunschwelg, 33

Knowledge-Based Systems and Deductive Databases ~Wolf-Tilo Balke - IS ~ U Braunschweig

@ 3.2 Deduction Systems 1’@-}0"}' @ 3.2 Deduction Systems Dem;,

* The Hilbert Program

! * So,now we also want create a deductive
- IS;arted by Hilbert around 1920 system in Hilbert style _
- ea: y
* Formalize all existing theories to finite, complete set of axioms ® First, we need some theorems: Q@
* Proof that these axioms are consistent
— Goals

* Deduction theorem
Preciseness: Use precisely defined formalisms and mechanisms

: -7 U {W,;}EW, holdsifand only if = EW,;-W,
+ Completeness: Show that all math can be proved by the system

Consistency:No contradictions will show up in the system - WZ follows from Wl and iff Wl o WZ follows from
Decidability: For every statement, an algorithm can decide if it is true
or not

— But we remember:The G6del incompleteness theorem — The deduction theorem is considered a
made the Hilbert program impossible in this form in 1933

“fundamental”  m-eule which is true in each
« Slight changes to the mission statement lead it to success. deductive theorem, but is not a theorem within the
* Tools still remain system itself

Systems and Deductive
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@ 3.2 Deduction Systems ﬂemur

* Modus Ponens
— Already introduced by Aristotle
-omode that affir
—{W, Wi > W3 EW, —
— If W, follows from W; and W, is true, also W, is true

— Example:
*Rul e: “1f it is Tuesday,
*Fact: “Today i s Tuesday.”

*Derived fact: “Thus, toda

Systems and Deductive TU Braunschwelg, 37

@ 3.2 Deduction Systems ‘DEIOHL

* An Hilbert-Style deductive system for a language
L consist of
— A set of formulas of L called logical axioms
* All other statements can be followed from the axioms

* It cannot be proved within the system if they are true or
not, they are just “given”

* If you want to prove or deduce only tautologies, also your
axioms need to be tautologies

* Hilbert system use extreme numbers of axioms, thus they
are also called axiomatic systems

— A set of inference rules

* Rules transform one statement into a new one

Systems and Deductive TU Braunschwelg, 39

@ 3.2 Deduction Systems ’DEIOHL

— As the only rule, we use modus ponens
< {A,A>B}EB
— Modus ponens is usually enough for all axiomatic
deductive systems

* It can be shown that additional rules do not provide
additional expressiveness

+..but may be used onve

Systems and Deductive ~TU Braunschuweig a1
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@ 3.2 Deduction Systems ﬂfﬂm]r

* One can prove that Modus Ponens is universally sound
— i.e.it never generates incorrect knowledge
* In contrast consider the popular abduction inference

rule
—{(W oW, W} W,
— Abduction often useful, but not sound
— Example
*Rul e: “1f it has
«Fact : “The street
«Derived fact: “Thg
— Example
«Fact: “A patient

face and high fev
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@ 3.2 Deduction Systems ”Em"r

* Example: deductive system
— Axioms: axioms are all well-formed formulae of £ which
are instances of one of the following schemas
* Al: A-> (B»A)
* A2: (A— (B-C))- ((A»B) - (A-0))
* A3: (A= =B) - (B-A)
* Thus,all axioms are tautologies
— This system can be extended with additional axioms types
to also cater for predicates and quantifiers
— Thus, there are an unlimited number of axioms
 Frog(Hector)—(Lake(Hector)—Frog(Hector)) (Type Al)
* A - (= A-> —A) (also Type Al)

Knowledge-Based Systems and Deductive Databases ~Wolf-Tilo Balke - IS ~ U Braunschweig 20

@ 3.2 Deduction Systems ﬂfﬂ{)m

* The axioms and rules contain only formulas using
Y and =

— But by using the equivalence rules, all other formulas
with A,V,or Z can be transformed to only use Y
«AAB=-(A- (= B))
«AVB=(-A)-B
cAoB=(A-B)A(B-A)

Knowledge-Based Systems and Deductive Databases - Wolf-Tilo Balke - IS - TU Braunschueig 2
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@ 3.2 Deduction Systems ”f}mur @ 3.2 Deduction Systems Dfﬂm"v

* Are those axioms really tautologies? * Deductive systems now generate proofs

—Al: A-» (B> A) — If you want to prove that a statement A is satisfiable
4 [B____[Boa or a tautology, you construct a prove which ends with

0 0 1 1

0 B 0 ) statement A

2 0 2 2 * Aprooffromaset to A ina deductive system

' \ ; ' is a fini W1, ...W, of formulas of £
—A3: (A —=B) - (B-A) is a finite sequence W, ... W, of formulas o
TS R ET N T ST such that W, is eithegg agom JSailie, o

0 0 1 1 1 follows from one of the previous B; by the

0 ! 0 > 1 inference rules

1 0 1 1 1

1 1 1 1 1

—7 s the set of hypothesis from which A follows

Systems and Deductive TU Braunschwelg, 23 Knowledge-Based Systems and Deductive Databases - Wolf-Tio Balke - IS ~ TU Braunschweig 2

@ 3.2 Deduction Systems ’DEIOHL @ 3.2 Deduction Systems ﬂ'ef'ﬂ:llr

* Example Proof: * Fun Proof:

—Is =B — (B— A) a tautology? —--AEA?

*ie. FaB—>(B->A)? -W;=--A (Hypothesis)
— By using the deduction theorem, we get -W,=--A- (= A->—-A) (Axiom 1)

+ =B F(B-A) - W;=——-A->—--A (MPW,&W,)
— le —B (H)’POthESiS) - W,;E (—|—|—| —A- —|—|A) g (—|A—) bbb A) (Axiom 3)
~W,=—B- (-A - —B) (Axiom 1) —Ws;=—A->---A (MPW;&W,)
- W,=-A -» =B (MP of W, and W,) - W= (mA-a0nA) - (A A) (Axiom 3)
-W,=(-A » =B)-» (B—>A) (Axiom 3) ~W;=2-A-A (MP W & We)
—W,=B-A (MP of W and W,) ~We=A (MP W, & W)

Systems and Deductive TU Braunschwelg, 5 Knowledge-Based Systems and Deductive Databases ~Wolf-Tilo Balke - IS ~ U Braunschweig I3

@ 3.2 Deduction Systems BF}IOHL @ 3.2 Deduction Systems DEIOHL

* Hilbert-style deduction has several drawbacks
— Few rules, but many axioms

* Better Idea: Natural Deduction

* This is quite the opposite of what we want in a deductive — Use more rules, but a limited set of axioms
gaﬁbf;](;‘gr'tgeéyfteén Ofnthlls ﬁfﬁgrﬁ“ aou?“mitaed)‘( i oms . — Most famous natural deduction calculus introduced by
— Finding a proof is very tricky the Gottinger mathematician Gerhard Gentzen
*lt"s hard to see when which * Gentzen Sequence Calculus, developed in 1938
. 'Prl;:i,fof\:en we just end up doing trial & error * “Ich wollte zunachst einmal einen Formalismus aufstellen,
— This Is not what we want to a database der dem wirklichen SchlieBen maoglichst nahe kommt. So
— Feels unnatural ergab sich ein , Kal ki

* Many people felt that this kind of deduction is very unnatural and — These calculi have, in modified from, later
does not resemble the way how a mathematician would perform

a proof been adapted by deductive databases

Systems and Deductive ~TU Braunschuweig a7 Knowledge-Based Systems and Deductive Databases - Wolf-Tilo Balke - IS - TU Braunschueig
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@ 3.2 Deduction Systems D'F}.m"_r @ 3.3 Test for Unsatisfiability

* Wonderful example for Gentzen Calculus goes *Back
here

to our topic..

— A user starts extending concepts for his intensional
database  formula by formula (i.e. closed formulae!)

* If you can see this slide, please re-download in a - ff’r S‘E%;"i'; E)r:z;l::l{asf‘i/:;:: DRt
couple of Fla)’S and hope that the content has * Using our lemma, this can be done by showing that the
been provided

formula =W already follows from the set of formulas ~
* Which means that every model of ~ s also a model of =W

* Which means that all possible interpretations have to
be tested..?!

* We are back into the model-theoretical world

Systems and Deductive
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@ 3.3 Test for Unsatisfiability @ 3.3 Clauses

* Obviously there is an unlimited number of

* Basically clauses consist of literals
possible interpretati

— The set of literals L consists of all atomic formulae
Al A and the respective negated atomic formulae —=A
* The atomic formulae are called positive literals

* Idea: use interpretations that are representative
for the entire class of all interpretations!

. ’ * The negated atomic formulae are called negative literals
— Are there such interpretations? ) . i
* |f some atomic formula does not contain variables,
— For what type of closed formulae? it is called a ground literal
—e.g:

— For clauses (certain type of closed
formulae) the Herbrand inter-
pretations are representative

* A, —A, Frog(Hector), =Frog(Hector), isGreen(x),
—isGreen(x), ...

Systems and Deductive
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@ 3.3 Clauses @ 3.3 Horn Clauses

. ﬁ:r!:lgse is the universal closure of a disjunction of * So, what is special about horn clauses?
i
- ,UL,U..UL), L/L, — Remember the transformation rule for semantic
UL, L i ; _
« A Horn clause is a clause that only contains at equivalence: (nA)VB=A-B
most a single positive literal
—eg" (#A,U-4,0..0-4,,04), AlA,

— Horn clauses without a positive literal are called goal
clauses

* Thus, definite Horn clauses actually represent an implication

*=A V-AV.LLV=A L VA S(AAAANCANA L) -A,

— Horn clauses with exactly one positive literal are called
definite clauses

™M
— Horn clauses with one positive but no negative literals are
called fact clauses

Systems and Deductive
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@ 3.3 The Herbrand Universe @ 3.3 The Herbrand Universe

* Back to the topic: Define a representative
interpretation which can replace any other
— So called Herbrand Interpretation

How to construct the Herbrand base B!

— Take all the terms of the Herbrand universe and apply
the predicates of the language £ to them

— For each predicate symbol there is a (usually infinite)

. ; number of terms that can be used as argument

* The Herbrand interpretation of an language £ « For every P T as a n-ary prediacte symbol all
is based on

combinations of n terms t; from the universe U, are used
— Herbrand Universe U, consisting of all ground e P(ty, .. t,) 1 B, witht, 1 U,
terms

— Herbrand Base B, consisting of all ground atoms

Systems and Deductive
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@ 3.3 The Herbrand Universe

* Example

@ 3.3 The Herbrand Universe

— Given a language £ which allows following statements
and I''={Hector, green}, Q := {hasColor},
I1:= {Frog, equals}

— Given is the language L
e [:i={a,b}, Q:={f g}, 1:={P},X:={}
— The Herbrand universe thus is

* W= vx (Frog(x) — equals(hasColor(x), green))
U= {a (), g(a), ((f(2), f(g()), ..} U U, = {Hector, hasColor(Hector),
(b, f(b), 8(b), f((b)), f(g(b), .-} hasColor(hasColor(Hector)), ...} U
* All terms which can be generated by using the function and L
constant symbols

{green, hasColor(green), hasColor(hasColor(green)), ...}
* B, = {Frog(Hector), Frog(hasColor(Hector)), ...} U
* By= (P(a), P(F()), P(g(@)), P((@)), P(f(g(a)), -} U {Frog(green), Frog(hasColor(green)), ...} U

{P(b), P(f(b)), P(g(b)), P(f(f(b))), P(f(g(0))). -} }

{equals(Hector, green), equals(hasColor(Hector), green),
* All ground atoms which can be generated using the universe LU
— i.e.no variables allowed here

— The Herbrand base is

Systems and Deductive
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@ 3.3 The Herbrand Universe @ 3.3 The Herbrand Universe

* Finally, an Herbrand interpretation

* Example:
I=(U, I, I Ip) is given by

Uev — An Herbrand Interpretation evaluates the term
Y=Y f(g(a)) to f(g(a)) € U

* The Herbrand universe is used as universe (g( )) (g( )) £

—I¢(0):=c -

— Given a substitution p(x)=g(f(b)), the term f(x)
evaluates to f(g(f(b)))eU,

* Thus,any constant symbol ¢ € T is interpreted by itself
— T (B):Ug%.. X Upo Up, f(tgety) B F(tpenty)

* Any functional symbol f € Q) is interpreted by itself

mhe ) \ — Keep in mind that the term f(g(a)) and the universe
— Each language entity is mapped to an equivalent universe element f(g(a)) are not the same although they look
symbol )
y . . : the same!
* Thus,we create a completely symbolic interpretation without

a specific real-world semantics * One actually means something, the other is just a symbol

Systems and Deductive

Balke - IS - TU Braunschuweig
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@ 3.3 The Herbrand Universe

* U, I, and I; are the same for all
Herbrand interpretations

+ Herbrand interpretations only differ with respect to

the predicate interpretation I,

— For two different Herbrand interpretations, P(a) might be
true in one and false in another

— Thus, Herbrand interpretation can be defined by listing
all atoms from the base which evaluate to true
* A Herbrand interpretation can identified with a subset of the
Herbrand base and vice versa
* e.g.Herbrand Interpretation I, = {P(a), P(f(a))},
Herbrand Interpretation I, = {P(g(a)),P(g(b))}

Systems and Deductive TU Braunschwei

@ 3.3 The Herbrand Universe

* Lemma '/ ,/
— Given a set of clauses ~ o9
+” hasamodel,ifand only if~ hasa Herbrand model

7 s unsatisfiable, if and only if ~ has no Herbrand model

— That means that all symbols in a (set of) clause(s) can
be interpreted in a purely syntactical way
* If there is a syntactic possibility to satisfy the clause(s),

there will also be some (more or less useful) semantic
interpretation

Systems and Deductive TU Braunschwelg, 63

@ 3.3 The Herbrand Universe

* So.. How do Herbrand models help?

— They are just a syntactical interpretation without any
relation to the real worl

—-Can"t | al ways construct
formula?

* Consider this:
— We want to build a deductive database.

— So, we need rules how to use the data within a database
to construct Herbrand interpretations!

— If a Herbrand interpretation constructed by the symbolic

data of a DB is also a model, it can be used
to for further evaluation and querying!

Balke - IS - TU Brau

14.04.2009

@ 3.3 The Herbrand Universe

+ A Herbrand Model of a set of formulas ~ is a
Herbrand interpretation, which is a model of ~
* Example: W [ ¥x,y(loves(x, y)Y loves(y, x))
— ... language Lis implicitly given
— Ij:={loves(Tarzan, Jane), loves(Jane, Tarzan)}
* I; isa Herbrand Model (remember, closed world!)

— I,:={loves(Tarzan, Jane), loves(Jane, Paul D’Arnot)}
* I, is not a Herbrand Model !

Knowledge-Based Systems and Deductive Databases ~ Wolf-Tilo Balke IS ~ TU Braunschweil

@ 3.3 The Herbrand Universe

* Using this lemma, we can finally test the
unsatisfiability of ~ U {W}
— Remember: we have to show ~ k=W
— But now, we just have to show the existence/
nonexistence of a single Herbrand model
instead testing all existing models

* But careful, this lemma only works for clauses, not for
general closed formulas

Knowledge-Based Systems and Deductive Databases ~Wolf-Tilo Balke - IS ~ U Braunschweig 6

@ Next Lecture

Herbrand Theory
— Why and how do Herbrand interpretations work?
Database Clauses :

-

— How does data relate to models,
interpretations, and rules?

Datalog a

— How can we work with i
deduction in a database?

arent (X/¥) -

&, 2) ,ancestor

ancestor (&1 17 T oror

ancestor (%)

Knowledge-Based Systems and Deductve

ses - WolfTilo Balke — 5 ~ TU Braunschwelg, 66
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